If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+35x^2=9
We move all terms to the left:
4x^2+35x^2-(9)=0
We add all the numbers together, and all the variables
39x^2-9=0
a = 39; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·39·(-9)
Δ = 1404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1404}=\sqrt{36*39}=\sqrt{36}*\sqrt{39}=6\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{39}}{2*39}=\frac{0-6\sqrt{39}}{78} =-\frac{6\sqrt{39}}{78} =-\frac{\sqrt{39}}{13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{39}}{2*39}=\frac{0+6\sqrt{39}}{78} =\frac{6\sqrt{39}}{78} =\frac{\sqrt{39}}{13} $
| 9y-3/2=3/2 | | -5m+9=-6 | | (2.5=73/2n)2n | | X-5y=-50 | | 10x=8x+2x | | 5x/3+5=2x-5 | | 3x-6-8x=-2x=8 | | 4+5/u-4=1/u-1 | | 3d+3=17 | | 3x+2=7x-58 | | 3(2y-3)-6=-12 | | (7^-x)^2=343 | | (13-15)-(9+6x)=-3x | | 1.5=y^2 | | t=15/5 | | (x-6)+(X-10)=7X/5X | | -2y²+11y-12=0 | | 5x-(9x-16)=56 | | -4.9x^2+20x-16=0 | | (x-6)/X-10)=7/5 | | 14x-6=8x+18 | | (7x-6)=(5x-10) | | Y=5x+, | | a²+a-56=0 | | -2(4x-1)-3x+5=−2(4x−1)−3x+5=-26 | | (y+4)-(y-3)³=3 | | -5+2=-x-4(x-2) | | -x^2=2x-24=0 | | -x^2=2x-24 | | 2(1x-10)+1=60 | | 5(11x-3=425 | | 2(m+7)+(3m-3)=16 |